

Modelling soil organic carbon at multiple depths in woody encroached grasslands using integrated remotely sensed data

Sfundo Mthiyane

PhD Candidate

University of KwaZulu Natal

Background

Woody Encroachment

- ❑ The global transformation of mesic grasslands into woody-dominated ecosystems has significantly increased over the past century
- ❑ Common documented drivers are fire suppression, overgrazing, nutrients availability, climate change and global carbon dioxide enrichment

Impacts

- ❑ Reduces the quantity of productive grazing landscapes for wild herbivores and livestock
- ❑ Reduces the frequency and intensity of grazing and fire, which are key factors maintaining grassland diversity
- ❑ Pronounced impact on below ground nitrogen and carbon pools (Soil Organic Carbon) in grasslands

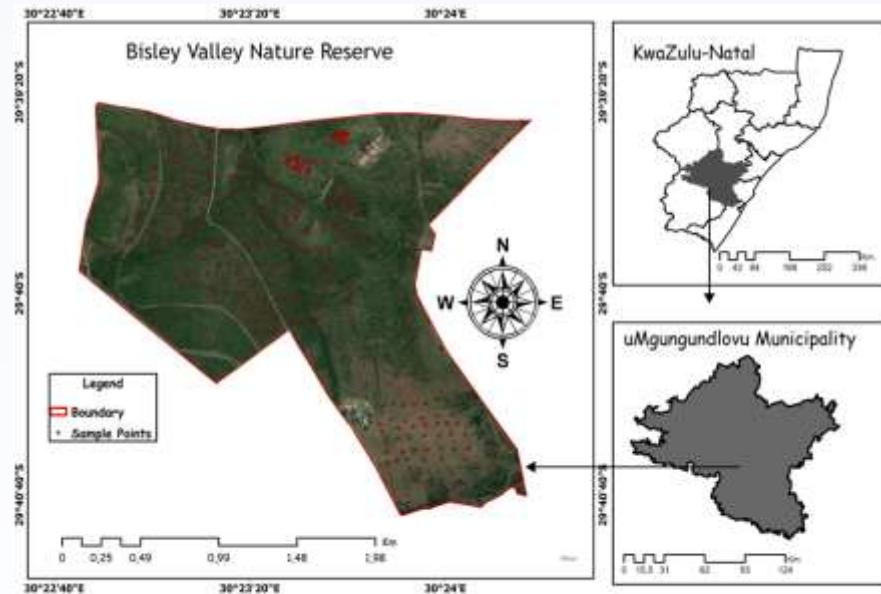
Background

Benefits of SOC

- ❑ Provide various ecological services such as regulating the climate, improving water quality, and supporting biodiversity
- ❑ Improve soil structure, retain water, and provide plant nutrients, characteristics critical for increasing the resilience of soils towards droughts and floods
- ❑ A decline in SOC can trigger a loss of soil quality and productivity

Knowledge gap

- ❑ SOC is expected to be higher in deeper soils of woody vegetated landscapes due to higher root litter and decomposition
- ❑ Contradictions on whether woody encroachment increases or decreases SOC concentration
- ❑ Environmental factors that include historical land-use patterns and soil biophysical attributes
- ❑ Most studies that have investigated SOC in deeper soils of woody encroached grasslands have typically utilized traditional methods that rely on field-based observation that are expensive, labour demanding and time consuming
- ❑ Advancements in satellite technology and data storage have tremendously revolutionized SOC stocks modelling


Aim & Objectives

- ❑ Estimate SOC at various depths (30 cm, 60 cm, and 100 cm) in a woody-encroached grassland by integrating Sentinel-1 (S1), Sentinel-2 (S2), PlanetScope (PS) satellite imagery, and topographic variables.
- ❑ The study coupled random forest and remotely sensed data to model SOC distribution at different soil depths of Bisley Nature Reserve affected by a proliferation of woody vegetation on a grassland.
- ❑ The study also evaluated the spatial distribution of SOC from a wood encroached to a pristine grassland.

Study Site

- The study area is located at Bisley Valley Nature Reserve (29° 39' 53" S; 30° 23' 32" E), Pietermaritzburg, South Africa
- The area is highly invaded by woody trees and thus minimizing the dominance of pure grasses.
- Although woody trees dominate most of the landscapes, there are few areas dominated by pure grasses in the reserve.

**Space for
Societal
Resilience,
Transformation
and
Intelligence**

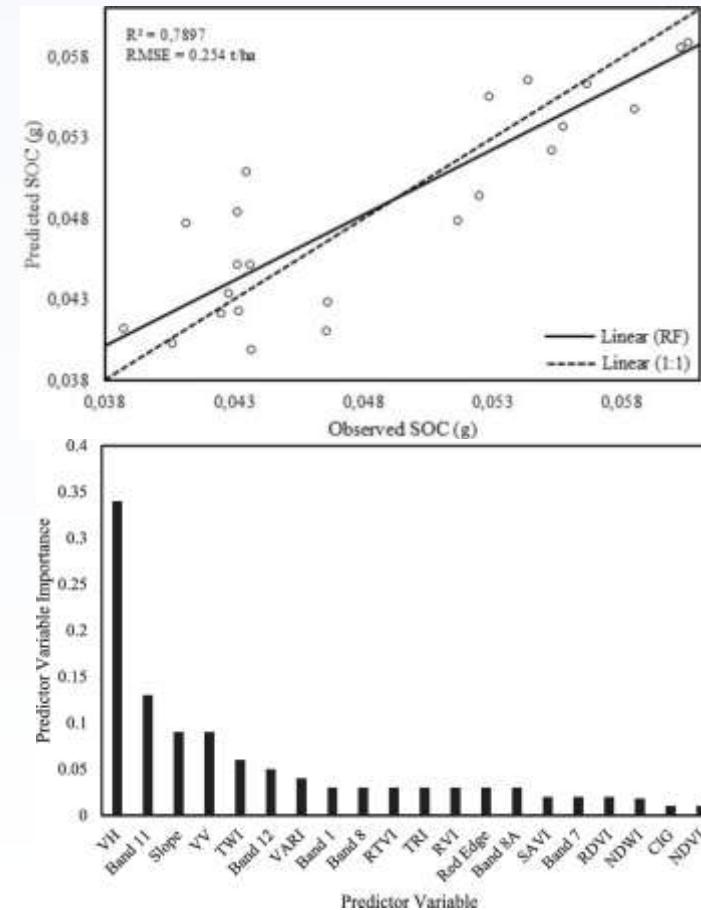
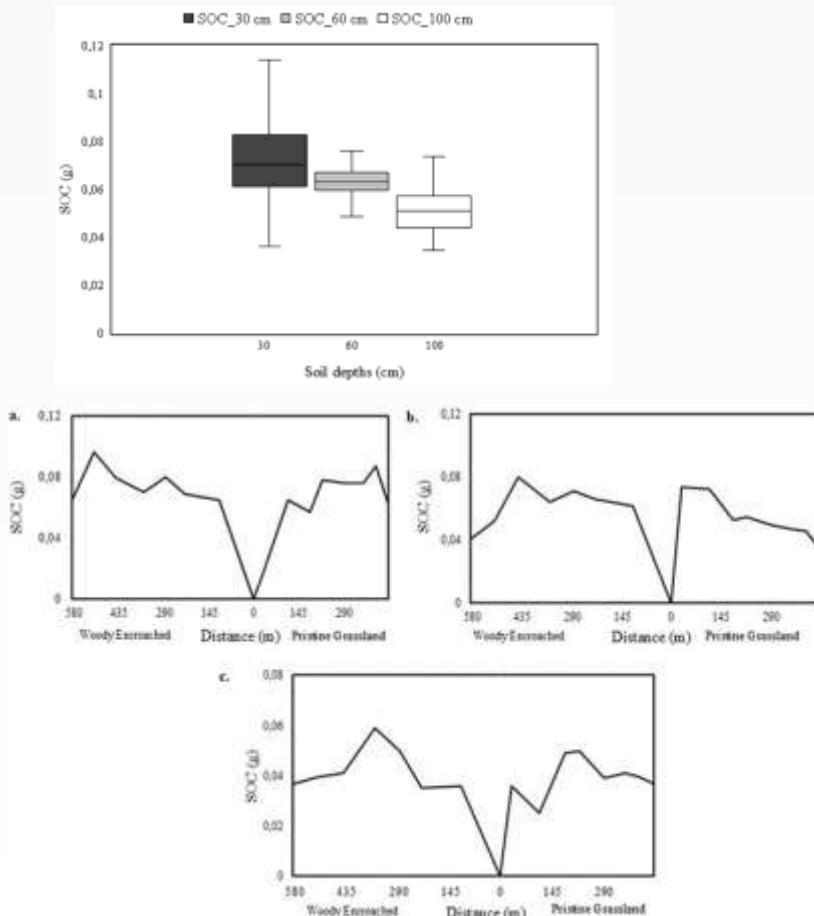
DATE: 20 – 22 August 2025

Field Data Collection

- ❑ Employed a purposive sampling strategy to establish three transects that were 622 m long measured from a pristine grassland to a woody encroached grassland
- ❑ At each transect, a total of 40 plots (15m² each) were established
- ❑ Within each plot, 1x1 meter square quadrant was placed every 15 m, and three soil samples collected per quadrant at different soil depths
- ❑ As a result, a total of 40 soil samples were collected for each depth (30 cm, 60 cm and 100 cm) using a handheld MAC AFRIC 68 CC EARTH Auger Drill
- ❑ Additionally, through utilizing the Trimble Handheld Global Positioning System with a sub meter accuracy, Global Position System (GPS) locations for each plot were recorded
- ❑ A total of 360 soil samples were collected and subsequently dispatched to the laboratory for further investigations

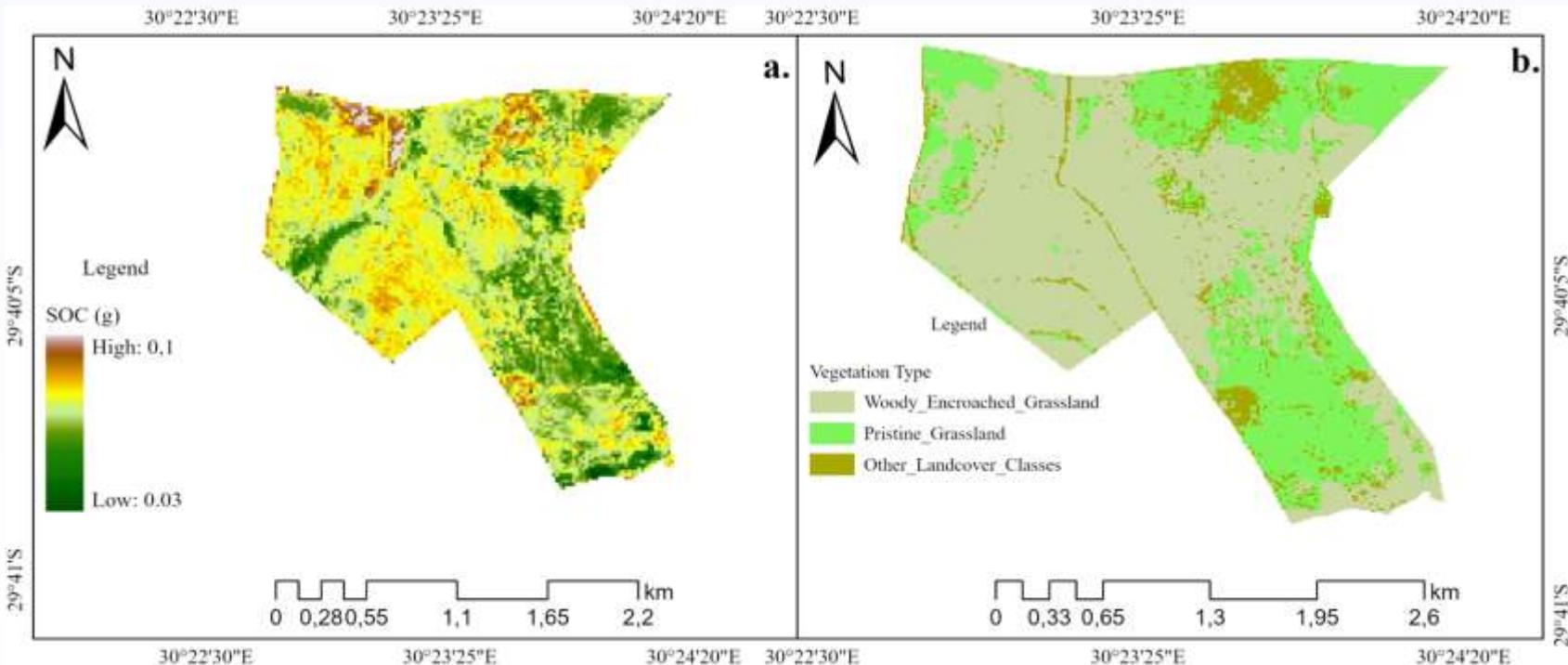
Image Acquisition and Preprocessing

- ❑ A combination of radar (SAR), Sentinel 2 and PS satellite images
- ❑ PlanetScope(<https://www.planet.com/markets/education-and-research/>)
- ❑ SAR & S2(<https://dataspace.copernicus.eu/>)
- ❑ The Ground Range Detected (GRD) format SAR image of interferometric wide swath mode was pre-processed with ESA's Sentinel-1 Toolbox in the software SNAP (version 6.4.5)
- ❑ Georeferencing, Thermal noise, Terrain Correction, etc.
- ❑ Topographic residuals were extracted from a SRTM Digital Elevation Model (DEM) image with 30 m spatial resolution acquired from Earth Explore online platform. Using ArcGIS pro (version 3.0)
- ❑ Elevation, Aspect, Slope, and Topographic Wetness Index (TWI)
- ❑ Random Forest



Index	Formula	Reference
Normalized Difference Vegetation Index (NDVI)	$(B8-B4)/(B8 + B4)$	(Rouse et al., 1974)
Green Normalized Difference Vegetation Index (GNDVI)	$(B9-B3)/(B9 + B3)$	(Ahamed et al., 2011)
Red-Edge 1	(Red-Edge/Red)	(Cloutis et al., 1996)
Radar Vegetation Index (RVI)	$(8*VH)/(HH + VV + 2*VH)$	(Kim et al., 2011)
Modified Soil Adjusted Vegetation Index (MSAVI)	$29 + 1-1*/2$	(Wu et al., 2007)

Space for
Societal
Resilience,
Transformation
and
Intelligence

DATE: 20 – 22 August 2025


Results

Space for Societal Resilience, Transformation and Intelligence

DATE: 20 – 22 August 2025

Results

Conclusion

- ❑ The study established that integration of spectral information with vegetation indices provide valuable information for monitoring SOC distribution in woody encroached grasslands
- ❑ We conclude that freely and accessible SAR and PlanetScope data and topographic factors provide more opportunities to quantify SOC stocks in grasslands
- ❑ The study is beneficial to reserve supervisors and policymakers to make informed decisions on conserving the nature reserve
- ❑ The methodology presented by the study is a cost-effective and time-efficient procedure of monitoring SOC distribution across woody encroached grasslands.
- ❑ Reserve managers can use the insights of the study to establish effective land management patterns to preserve and maintain SOC pool

Thank You

